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HIGH-ORDER SPARSE FACTORIZATION METHODS FOR ELLIPTIC BOUNDARY VALUE PROBLEMS

James M. Hyman
Thomas A. Manteuffel

Los Alawos National Laboratory
Los Alamos, NM 87545

ABSTRACT

We are interested in solving the sparse linear
systems, Av = b, that arise from finite difference or
finite element approx mstions to partial differential
equatious. May iterative methods requi-e solving an
easier approximate equation, Pv = b, on each
iteration. This is often called preconditioning or
operator splitting [1,2,4,6-9,12-14]. The methods we
consider factor A approximately into the product of
an upper and lower triangular matrix P = LU = A.
These methods are called incomplete LU factorization
methods and their convergence rate depends on how
vell P oapproximates A. We describe some npew
algorithms to generate accurate LU decompusitions
based on the continuity of the solution v.

1. INTRODUCTION

In this paper we consider iterative numerical
methods for thke soiution of sparse linear systems of
the form,

Av = b, 1)

that arise in the finite difference or finite element
approximation of a partial differential equation
(PDEs). In these equations the vector v of length N
approximates the smooth solution to a descritized PDE
defiped on an underlying n X n spatial mesh. The
smoothness of the solution will be exploited to
detane bhigh order approximate factorizations of A.
For simplicity we will analyze these E{obleml for
twe-dimensional equations where N = n but the
n2thods generalize easily to higher dimensions.

11 the matrix P approximates A, then
nonstationsry iterative methods of the form [15]

e ALY UL I (2)

can be used tu solve (1.1). The matrix P, called the
precorditioning mat.oi«, is generated by approximating
A by an incomplete LU decomposition {2,6,8,9,12-14].
That is,

A=z LDU-R=P-R , (3

where L is lower triaugular, D is diagenal, U is an
upper trianguiar mstrix and R is the residusl error
matrix. The vwatrices L and U have unit diagonals.
These matrices are chosen so that the residual matrix
R is smal]l and the approximating system Pv = § i
essier to solve than Eq. (1). The nonzero structure
of L + U is chosen to be similar to (if not equal to)
the nongero structure of A,

The number of iterations the algorithm takes to
converge to a specified ergor toleg,nce is relltgq to
the condition number of P A 0 x(P "A) = x(] - P R).
(The condition nuaber is the ¢atio of the largest to
msslleat singuiar value of a matrix.) Note that the
shaller the residusl matriz is the wsmaller th.
condition number will be and the faster the method
vill converge.

Often the iteration can be accelerated using a
conjugate gradient {1,3-5,7,8,12], Chebyche
[10,11], or other polynomial acceleration algorithm.
When conjugate gradient acceleration or Chebychev
acceleration 1is wused the convergence rate s
proportional to the square root of the condition
number.

We will give a non-rigorous gfgument on how to
estimate the condition number (P A)._lwe lssumguP
is cloue_’enough t._ou A so that if ||A "|| = O(h ")
then |[{P || = 0(h "), where ||:|| is the operator
norm incduced by the 2-porm and L = 1/n is the mesh
spacing. (For Laplace's equation, we have ¢ = 2.).
When |{R|| 3 {{A - PI| = 0(h") then the condition
aumber ¢f P "A can be approximated by

1

(P 18y = 11P7TAL 11A7MR
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1+ o(hP9)

1+ O(N(U'B)/Z)

The condition number of A, K(A) = O(h-u), is
determined by the problem being solved but the
condition number of the residual matrix can be
reducea by making Pﬂas close to A as possible. That
is, if {|R||l = 0(h"), then we wish to make f as
large as possible. In particular, if B > o tnen the
method will converge faster for larger problems than
smaller ones.

A standard method for forming L and U is to
perform a complete decomposition and discard fill-in
[12] or to add the discarded fill-in back to the
diagonal {B,9]. We wish to abandon this approach in
favor of treating the elements of L, D, and U as
unknowns and choosing them so that R has ceitain
desirable properties.

Since A is assumed to be the discritization of
a partial differentia)l operator we know Lhat the
eicanveclors (singular vectors) associated with the
smallest eigenvalues (singular wvalves) will be
relatively smocth. The compouenta of the errcr in
the direction of these eigenvectors will be the mart
difficult to i1esoive using iterative methods. For
this reanon, we would like to construct P to
approximate A closely on the discrete analogues of
smooth functions. In other words, we will choose ¢
so that R is as emall as possible on smoth
functions.

To illustrate this approach consider the
discritization of the diffusion convection equation

8 v -] Bv v Ov .
* Ny - 5;(035}) * Byt ﬁzé; toyv =

(&)

definerd on the region {0,1) x |0,1].



The five-point star second-order approximation
to Eq. (4) often leads to & finite difference A,
app-oximation that can be written

In the simplest incomplete LU decompositiop of
the matrix L + U has the same nonzero structure
as A. We shall call this factorization ti» ILU(O)
method since it has no extra nonzero elements.

lk_] v + lk v + ak v
-1,0 Yi-1,j 0,0 Vi,j 1,0 Vi+1,] The ILU(O) Method
(5) In the JLU(0) methou the lower triangular
k k-n matrix L shown in Fig. 3.a, has the stencil shown in
* 20,1 Vig+1 * %0,-1 Vi, j-1 % Pi,j Fig. 3.b.
at each point in the mesh. There vi j is the r_;
solution at (xi,yj) and is the k-th [k = i ¢+ (j - 1)n) i
element in the one dimensional v array. ll 1 '
The matrix A is shown in Fig. 1 and will be -1,0 (o] !
A Ty ., ko _ k¥l K k+n
svametric (A = A") if 307 %1,0 and 30,1 = 0.-1°
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| Figure 3.a. The matrix L for the ILU(0) method.
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Figure 1. The matrix A for the five point operator. o —-
The stencil of s finite difference approximatior
can be an excellent tool to wunderstand how the
underlying mesh, the matrix A, and its approximation
P are related. Using notation from Vupont, Kerdall
and Rachford [6] a five point approximation to (%) ken
leds to a matrix A described by the stenri)l in !0 -1
Fig. 2. ® '
. \{ k Figure 3.b. The stencil fo: L.
(";h‘«u) fc.
The upper triangular matri:x U, shown in
Fig. 4.a, has the stenci! in Fig. 4.b. The diagonal
watrix D has diagonal elem:r. s & . The wtencil for
o the preconditioning matrix P = LDU s shown in
afd K k Fig. 5.
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Figure 2. The ntencil for the matrix A.

The coefficients st the nodes (mesh points) are
the elements in the k-th, (kR = 1 ¢ (§j - 1)n), row of
A.



-
c
—
-
=

Figure 4a. The matrix U for the ILU(0) method.

Figure 4b. The stencil for U.
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Figure 5. The rtencil for the preconditioning matrin
P = LDV,

This will also be the stencil ‘ﬁf the residual
matrix R = P-A. Each entry in the k= row of R will

b‘_ﬁ linifr funftion of the five unknowns Gk, ﬂf;lo,

-1’ Y1.0° Yo.v These terms are also functidns
o?'oéher v£5ues b& &, 2, and u which we shall assume
to be chosen already.

Siance there are seven stencil pein %, it will
not be possible in general to make the k row of R
identically zero. We wmay, however, choose the
parameters so as to make the stencil zero on the
points associated with the stencil of A. This
corresponds to the methods in [10]. If we choose
the unknowns so that the product of R times a
constant vector is zero we have lost only one degree
of freedom. One choice of the remaining f{our
corresponds to the method described in [8]. Suppose
ve use two more degrees of freedom to make the
product Rv = 0 when v corresponds to a function that
is constant in x and linear in y, or when v
corresponds to a function thst is constant in y and
linear in x; then, there are two degrees of freedom
left., Ii v corresponds to @& function with two
continuous ferivatives each term of the product Rv
will be O(h7).

The remaining two degrees of freedom are
insufficient tov make the product zero on the
quagrntics and bilinear functions, consequently
0(h®) is the test we may achieve. However, the twc
degrees of freedom may be L ed tc¢ reduce the
size of the elements ir the k ~ow of R. If we
choose o0 minimize the sum of the squares the
unknowns may be found by solving a 5 X 7 constrained
least squares problem. Another uge of these degrees
of freedom might be to make L° - U as small as
possible and thus P more nearly symmetric.

The entire procedure involves passing
sequentially through the grid points fnd chvosing
the five unknowns so that (Rv), = 0(h")., At each
grid-point, the equations involve elements of L, D,
and U that were chosen at previous grid-points, and
the five elements mentioned above, This
preconditioning has been shown to be supericr to
incomplete Cholesky [12] or modified incomplete
Cholesky (8] on test problems. However, what we
rea&ly seek is a factorizstion for which (Rv), =
0(h”). If the e'ements of R remain bounded as h ;s
reduced to =zero, thit would yield ||Rv}{ = O(h*)
whenever u corgfsponds to a smooth functinn. The
condition of P A would be independent of h. For
this we need a larger stencil.

The Compact ILU(1) Method

A more accurate incomplete factorization of A
can be formed by allowing L and U to have nonzeru
e¢lements in the positions other than those where A
is nonzero. I{ both L and U have one extra acnzero
element then the method i. called an 1LU(1) method.
There are seversl choizes as to where this extra
element can be added. To reduce the extrapelation
error we chose to add this extra clement such that
the stencil for P = LDU will be as close te A as
possible. This choice, c¢alled the compact ILU(')
method, has an L and U with the nonzero atructure
shown in Fig. 6. (The factorizations described in

[8] and [12] add gX77*1 K

410 U to the stencil of L
and U,) '

1,-1



k-1 Kk
2-1'0 e
¢ ——
k-n=1 k-n
b1,-1 L0,-1
-~ 'y

rigure ba. The

L

nonzero structure for L for the
compact ILU(1) method.

Figure 6b. The nonzero
compact ILU(1) method.
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Their product P = LDU has the nonzero structure shown
in ig. 7, as does the residual matrix R.
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Figure 7. The nonzero structure for

compact ILU(1) metlod.

wWith this stencil we have

nine stencil

points,
identically zero.

quadrastic, polynomial;
Pay * Pax 4P, ny ¢+ Py
of R 8§ that Rv =

Again

Suppose %
that is,

Let us

requires O degrees of freedom,
of freedom may be used to minimize the sums of the

P = LDU for the

seven unknowns and

cannot be made

corresponds to a
vix,y) = p, + p.x ¢
. choose the eleménts
for sny such polynomial. This
The remaining degree

squares of the elements of R or to promote the
symmetry of P. These conditions yield a 9 x 7
constrained least squares problem. We may in this
fasion pass sequentially through the mesh choosing
L, D, and U in such a way that if v corresponds to a
function uith three continuous derivatives then
(Rv), = o(h7).

kUn(ortunately. the size of the elements of R
groys as h + 0 with the net result that ||Rv}| =
0(b”). If instead we use, rnly three degrees of
freedom to make (Rv) = O(h") snd the remeining four
to reduce the size of the elements of R,
preconditioning results thst is again superior to 1iC
and MIC. The other four degrees of freedom may be
used to promote symmetry and, in fact, P can be made
symmetric except near two of the four boundaries.

The 1LU(2) and ILU(3) Methods

Let us consider even larger stencils in tge
hope that one may be found for which [|[Rv|| = O(h”)
for sufficiently smooth v. Clearly, such a stencil
exists because exact decomposition yields Rv = 0.
In the ILU(2) method we add one more point to the
stencil of L and U in the positions shown in Fig. 8.

Ek-l Ck

# -1,0 4

k=-n-1 k=n k~n+1
L2 %0,-1 21,1
[ — ——eel)

i

Figure 8a. The stencil for L for the nine point
ILU(2) method.

u

Figure Bb. The stencil for U for the nine puint
ILU(Z) method.

The stencil for P = LDU is shown in Fig. 9.
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Figure 9.

Using this same strategy we can add three extra
points to the basic ILU(0) stencils. In this ILU(3)
method there are 11 unknowns and 15 stencil points.
Recall that only six degrees ff treedom are required
in order to make (Rv), = O(h”) on smooth functions.
The remaining degrees of freedom can be used to
control the size of the elements of R.

Summary

In this paper we have presented a hueristic
motivation for choosing the elements of a family of
incomplete factorizations. Members of this family
have been shown to be numerically suvnerior to the
1C(12) and MIC(8) factoiizations. However, the work
required to form the factorizations is greater and
not easily vectorized. If a3fnctorization could be
found for which ||Rv|| = 0(h”) on smooth functions
th.»n the extra work could be justified. Numerical
results for the ILU(2) and ILU(3) methods are
incomplete but show great promise.
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